Исследование работы котельного агрегата с газотурбинной надстройкой Ермолаев И. Д. 1 , Озеринникова К. В. 2

1Ермолаев Илья Дмитриевич / Ermolaev Ilya Dmitrievich — студент; 2Озеринникова Ксения Владимировна / Ozerinnikova Ksenya Vladimirovna — студент, кафедра теплоэнергетики, энергетический факультет, Саратовский государственный технический университет имени Гагарина Ю. А., г. Саратов

Аннотация: совместная работа газотурбинных установок с водогрейными и паровыми котлами в котельных позволяет обеспечить надежное электроснабжение собственных нужд, что в свою очередь повышает надежность теплоснабжения потребителей, а также снизить удельный расход топлива на единицу получаемой тепловой и электрической энергии. Цели и задачи. Теплотехнический расчет когенерационной ГТУ, составление режимной карты.

Ключевые слова: когенерационная ГТУ, котельный агрегат, микротурбина, мини-ТЭЦ, совместная работа, природный газ.

Актуальность. В последнее время все большее внимание уделяется применению в энергетике газовых турбин малой и средней мощности. Одно из направлений их использования — это переоборудование котельных в мини-ТЭЦ. В рамках федеральной целевой программы по энергосбережению создание мини-ТЭЦ рассматривается как эффективное решение проблем электро- и теплоснабжения в масштабе небольших регионов, городов, поселков, промышленных предприятий и т.п. Совместная работа газотурбинных установок с водогрейными и паровыми котлами в котельных позволяет обеспечить надежное электроснабжение собственных нужд, что в свою очередь повышает надежность теплоснабжения потребителей, а также снизить удельный расход топлива на единицу получаемой тепловой и электрической энергии [1].

Проблеме использования газового топлива в котельной с каждым годом уделяется все больше внимания. При располагаемой температуре около 2000°С, в маломощных котельных получают теплоноситель относительно низкой температуры, около 90-120°С. Более перспективным направлением является такое, при котором из температуры 2000°С сначала вырабатывается эл. энергия, а затем при остаточной температуре около 500°С вырабатывается потенциал 90-120°С. Вторым моментом является ограниченность запасов природного газа, который является более ценным сырьем чем уголь. Данный подход целесообразно осуществлять с помощью организации газотурбинной надстройки к котельной. При этом в ГТУ вырабатываются эл. энергия за счет снижения природного газа, а выхлопные газы турбины с температурой 450-500°С можно сбрасывать в горелки КА. Поскольку в отходящих газах ГТУ содержится до 17% кислорода газы можно использовать в качестве окислителя для дополнительного топлива.

Объектом исследования является когенерационная установка производительностью 9,51 т/ч и 447 кВт, в номинальном режиме.

Задачей исследования является исследование когенерационной установки на базе ГТУ, определение совместных характеристик работы газотурбинного и паротурбинного циклов.

Описание технологической схемы установки

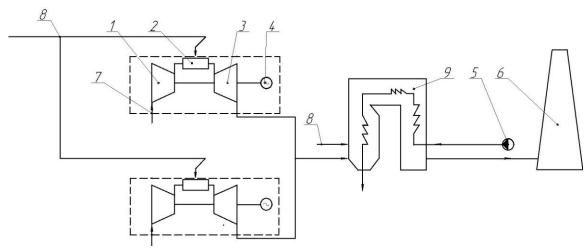


Рис. 1. Принципиальная схема установки [2]:

Технологическая схема работает следующим образом: компрессор 2 всасывает и сжимает наружный воздух (1), далее он поступает в камеру сгорания (3), куда также подается топливо (4) (природный газ), в камере сгорания (3) происходит процесс горения, продукты сгорания поступают на лопатки газовой турбины (5), которая находится на одном валу с электрогенератором (6), электрогенератор в свою очередь вырабатывает электроэнергию, отработавшие газы и газовой турбины (5) при достаточно высоких параметрах и большом коэффициенте избытка воздуха поступают в паровой котел (6), куда поступает также дополнительное топливо, в паровом котле (7) энергия, полученная в процессе горения, передается через испарительные поверхности воде, которую подает в паровой котел (7) сетевой насос (8), пар после котла подается на производство, уходящие газы поступают в дымовую трубу (9) и выбрасываются в атмосферу. Было установлено 2 газотурбинные установки, одна из которых работает в установленном режиме, а другая находится в резерве.

За основу были взяты параметры парового котла ДЕ-14-225 Γ М и микротурбины Capstone C800. В результате расчета были получены совместные характеристики, представленные в таблице 1.

Наименование	разме	Режимы					
показателя	рность						
Процент нагрузки	%	16	25	43	70	90	100
котла							
Паропроизводительн	т/ч	1,55	2,3	4,0	6,7	8,64	9,51
ость котла			8	5			
КПД котла "брутто"	%	87,4	90	92,	93,4	93,6	93,6
				3			
Расход топлива в ГТУ	м ³ /с	0,000	0,0	0,0	0,04	0,05	0,06
		9	2	3			
мощность ГТУ	кВт	128	200	264	328	385,7	447,8
						2	8
De sus -	м ³ /с	0.040	0.0	0.0	0.0002	0.000	0.001
Расход	M /C	0,049	0,0	0,0	0,0802	0,080	0,081
дополнительного топлива			66	76		9	3
в котел							
1	1	1	1		1	1	1

Таблица 1. Режимная карта совместной работы котельного агрегата и микротурбины

Графики зависимости исследуемых величин.

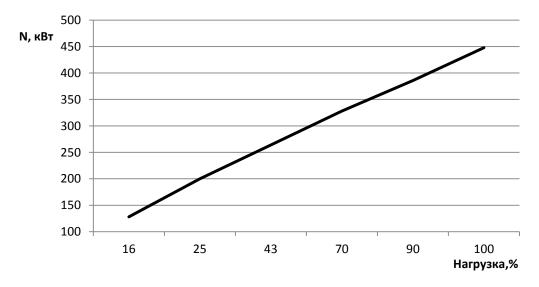


Рис. 2. График зависимости мощности турбины от нагрузки котла

По графику видно, что мощность турбины возрастает с увеличением нагрузки котла.

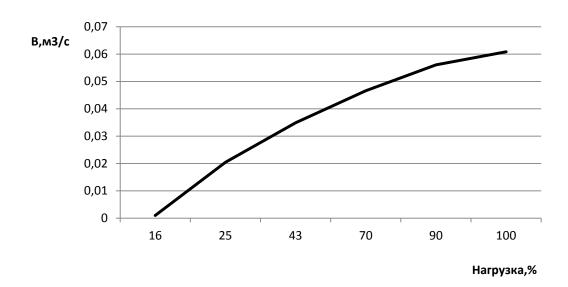


Рис. 3. График зависимости расхода топлива в ГТУ от нагрузки котла

Исходя из графика, в турбину нужно подавать больше топлива, чтобы увеличивать нагрузку котла. Дальнейшая задача данной работы: изучение фактора надежности в задаче оптимального резервирования мощности в котельных с газотурбинной надстройкой.

Литература

- 1. Арсеньев Г. В. Энергетические установки. Москва: «Высшая школа», 1991. 273 с.
- 2. *Тонкошкур А.* Γ . Использование Γ ТУ для децентрализованного энергоснабжения промышленных предприятий. Саратов: Γ СГТУ, 2002. 86 с.