Вопросы разработки экспериментальной системы в заданной предметной области Нозадзе Ц. С.

Нозадзе Циури Семеновна / Nozadze Tsiuri Semenovna – доктор технических наук, ассоциированный профессор, кафедра математики и информатики, факультет гуманитарный, Государственный учебный университет, г. Гори, Грузия

Аннотация: в статье излагается некоторые методические аспекты разработки экспериментальной системы (ЭС), реализующий общие для различных материалов экспериментальные исследования в инфракрасной (ИК) влагометрии. Рассмотрены технические, программные и методические аспекти, обеспечивающие экспериментальные исследования и создающий некоторую базу для комплексирования процессорных влагомеров.

Ключевые слова: эксперимент, измерение, инфракрасный, показатель, влажность, комплекс.

Современные рыночные взаимоотношения предопределяет условия по производству новых видов продукции, как по качеству, так и по времени, что соответственно требует принципиально новых подходов организации проектирования и производства. Современные информационные технологии позволяют создать комплексные системы автоматизации, обеспечивающие реализацию научных разработок, при этом сокращая сроки и затраты.

Повышение эффективности и качества научных и проектных работ по производству продукции, является определяющим фактором, удовлетворяющим рыночные условия. Существенное место в обеспечении этих работ занимают экспериментальные исследования, которые по степени структурной и организационной сложности, по объёму обрабатываемой информации в заданной предметной области является наиболее узким местом, задерживающие разработку новых видов продукции.

Особое значение для решения этой проблемы имеет разработка систем автоматизации экспериментальных исследований в заданной области, позволяющий ускорить ход работ, снизить их трудоёмкость и получить более точные модели объектов.

Современный этап развития систем автоматизации того или иного класса характеризуется созданием программно-технических ресурсов ориентированных на решение задач автоматизации конкретного применения. При этом, актуальной является задача сокращения затрат времени и средств на разработку.

Новые информационные технологии и технические средства позволяют эффективно решить эти задачи, методом комплексирования аппаратно-программных компонентов общего назначения и с доработкой недостающих объектно-ориентированных компонентов конкретного назначения. На рисунке 1 показана примерная модель структуры разработки экспериментальной системы.

Данный метод применен при разработке экспериментальной системы в инфракрасной влагометрии, реализующий экспериментальные исследования по определению модели измерения влажности в разных материалах.

Систематизация опыта использования ИК-метода определения влажности в различных объектах позволила выделить унифицированную технологию проведения экспериментов на единой информационно-методической основе, включая, первичные преобразователи, количество и тип измеряемых величин, обработку экспериментальных данных и интерпретации результатов. Однако для определения влажности конкретного материала необходимо определить математическую модель зависимости «оптический показатель-влажность». Экспериментально установлено, что для большинства материалов зависимость «оптический показательвлажность» задаётся логарифмической функцией

$$w=a+kln(\Pi -b)$$
 (1)

где: w-влажность, П-оптический показатель, a, k, b, постоянные, которые различны для разного материала. Для определения a, k, b коэффициентов необходимо серии экспериментальных исследований над многочисленными образцами, что весьма трудоёмкий, длительный процесс и связано с большими затратами.

Для упрощения экспериментальных исследований по определению зависимости «оптический показательвлажность» конкретного материала, разработан метод аппроксимации кривой (1) посредством три образца (вместо 30-50) с влажностью приблизительно соответствующий минимальному, максимальному и среднему значению измеряемого диапазона при условии wcp=(wmax-wmin)/2 и реализован в виде программной модули [1].

В данной работе предлагается экспериментальная система, содержащая аппаратно-программные и информационно-методическое обеспечение, покрывающее все задачи экспериментальных исследований в инфракрасной влагометрии, в частности:

- определение полосы чувствительности, т.е. аналитической да и реберной др длины волны;
- определение оптического показателя $\Pi = R\lambda a/R\lambda p$;
- определение функциональной зависимости влажности от оптического показателя $W=f(\Pi)$;
- проверка математической модели в конкретных условиях;

Для реализации вышеозначенных задач разработано экспериментальная система, содержащая вычислительный блок со встроенным микро-эвм, средства интерфейса и средства профессиональной ориентации — оптический преобразователь и спектрофотометр. Программное обеспечение в одной программной оболочке объединяет информационно-методические средства, реализующие автоматизированные технологии экспериментальных исследований и средства измерения и сглаживания.

Посредством экспериментальной системы определены математические модели для шпона сосновой пароды - $w=-13,712\times ln$ (2,718 – $\Pi\times 1,69$) и для шпона березовой пароды - $w=-9,64-9=93\times ln$ (– $\Pi\times 0,644$) и проведены эксперименты для проверки полученных моделей на точность.

Экспериментальные данные, полученные при проверке точности определения влажности по полученным моделям, приведены в таблицах 1 и 2. По результатам эксперимента следует, что погрешность измерения не превышает 0,8 % и удовлетворяет требованиям к точности измерения [2].

Экспериментальные исследования, проведенные над образцами антибиотиков, молочного порошка, муки и др. также показали, что погрешность определения влажности не превышает 0,7-1 %.

сухой вес Р1	влаж. вес Р2	оптич. показ. П	фактич. влажн. \mathbf{W}_{f} %	теорет. влажн. W _t %	абсол. погрешность $\Delta ext{wi=} ext{W}_{ ext{t}} ext{W}_{ ext{f}}$
5,6	5,98	0,844	6,8	6,91	0,11
7,12	7,90	0,783	10	11,31	1,31
5,24	5,74	0,808	9,5	9,34	-0,16
7,71	8,39	0,817	8,8	8,69	-0,11
4,65	5,07	0,806	9	9,48	0,48
7,00	7,83	0,774	11,9	12,1	0,2
3,55	4,00	0,765	12,7	12,94	0,24
7,49	8,10	0,832	8,1	7,67	-0,43
4,73	5,14	0,823	8,7	8,27	-0,43
7,47	8,02	0,839	7,4	7,22	-0,18
6,97	7,76	0,780	11,3	11,57	0,27
6,29	6,77	0,840	7,8	7,16	-0,64
4,27	4,43	0,901	3,7	3,78	80,0
6,39	6,67	0,887	4,4	4,49	0,09
7,12	7,92	0,780	11,2	11,47	0,27
3,81	4,21	0,797	10,5	10,17	-0,33
3,74	3,95	0,862	5,6	5,75	51,0
3,54	3,71	0,875	4,8	5,12	0,32
3,88	4,61	0,835	7,8	7,48	-0,32

Таблица 1. Экспериментальные данные шпона сосновой породы

3,62	3,82	0,871	5,5	5,32	-0,18
Σ					0,74

Таблица 2. Экспериментальные данные для шпона березовой породы

сухой вес	влаж. вес	оптич. показ.	фактич. влажн.	теорет. влажн.	абсол. погрешность
P1	P2	П	Wf %	Wt %	$\Delta wi = Wf - Wt$
5,90	6,12	0,903	3,7	3,7	0
3,60	3,96	0,786	10	10,74	0,74
7,09	8,08	0,740	13,9	13,62	-0,28
3,34	3,66	0,784	9,6	9,95	53,0
6,41	6,66	0,867	3,9	4,01	0,11
4,64	5,14	0,773	10,8	10,69	-0,11
4,58	5,16	0,747	12,5	12,32	-0,18
7,30	7,97	0,799	8,8	8,87	70,0
5,59	6,08	0,797	8,8	9	2,0
6,26	6,71	0,820	7,2	7,61	14,0
3,38	3,64	0,816	7,7	7,84	0,14
7,09	8,06	0,745	13,4	13,12	-0,28
3,65	4,09	0,752	12,1	12,46	63,0
4,45	4,84	0,803	8,8	8,62	-0,18
3,38	3,51	0,896	3,8	4,04	0,24
5,22	5,42	0,901	3,8	3,85	0,05
7,45	7,74	0,907	3,9	3,62	-0,28
3,38	3,81	0,755	12,7	12,18	-0,52
6,37	7,23	0,744	13,5	13,22	-0,28
4,07	4,22	0,901	3,7	3,85	0,15
Σ					0.71

Для определения математической модели других материалов нужно проводить эксперименты над тремя образцами испытуемого материала с влажностью приблизительно равной минимальному, максимальному и среднему значению измеряемого диапазона.

Экспериментальную систему можно использовать также, для создания объектно-ориентированного банка данных в данной предметной области, для чего должны решаться вопросы структурной организации хранения экспериментальных данных и полученных запрошенных данных [3].

Литература

- 1. Nozadze Tsiuri, Samxaradze Roman. Method of approximation of a curve «a humidity optical parameter» and the algorithm of definition of calibrating characteristics. Сборник научных трудов «Автоматизированные системы управления», Грузинский Технический Университет, Тбилиси 2008.
- 2. *Нозадзе Циури*. «Разработка унифицированных структур ПОК для реализации автоматизированных технологий в научных исследованиях», Диссертация на соискание ученой степени доктора наук, Грузинский Технический Университет, © Авторские права: Нозадзе Циури, 2008 г.
- 3. *Нозадзе Ц. С., Самхарадзе Р. Ю., Курдадзе М. А., Гачечиладзе Л. Г., Нозадзе С. О.* Разработка исследовательского прототипа экспертной системы для инфракрасной влагометрии (монография). Избранные вопросы современной науки. Монография. Часть XX. / Научный ред. д.п.н. проф. С. П. Акутина. М.: Издательство «Перо», 2016. 259 с. ISBN 978-5-906851.